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In a joint experimental and modeling approach we demonstrate chaos synchronization imposed by a delayed
shared feedback coupling between two nonlinear electro-optic oscillators. Robust identical synchronization is
obtained for both symmetric and strongly asymmetric timing of the mutual coupling, offering great potential
for applications such as chaos-based communications. We further demonstrate antisynchronization as well as
generalized synchronization with vanishing linear correlation, by detuning the nonlinearity in one of the
oscillators.
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The dynamics and synchronization properties of delay-
coupled nonlinear oscillators are of importance in various
fields of science—e.g., in brain dynamics �1–3�, population
dynamics �4,5�, and coupled semiconductor lasers �6�. Not
even two decades ago this paradigmatic system was first
studied, since delayed coupling renders the system infinite
dimensional, complicating the analysis. Since then, manifold
influences of delayed coupling have been identified, com-
prising multistability of synchronized and desynchronized
solutions �7�, amplitude death �8�, and delay-induced insta-
bilities in conjunction with symmetry breaking. For the lat-
ter, it has been found that two coupled systems can synchro-
nize, but exhibit a relative time lag, roughly corresponding to
the coupling delay �6�. This has been overcome by introduc-
ing a relay element in the coupling path. By this, zero-lag
synchronization has been demonstrated �9�. Analytic ap-
proaches underline the stability of such synchronization over
large parameter regimes �10,11�. Also other laser configura-
tions exhibiting zero-lag synchronization have been reported,
comprising unidirectional coupling �12� or self-feedback
�13,14�. In addition to its fundamental importance, chaos
synchronization of delay-coupled systems is currently being
discussed as a mechanism to realize new concepts for bidi-
rectional chaos communication and key exchange �15,16�. It
therefore can serve functional purposes.

In this paper we introduce a versatile system of mutually
delay-coupled electro-optic oscillators, allowing for robust,
multi-GHz-bandwidth chaos synchronization. By implement-
ing a delayed shared feedback-coupling �DSFC� scheme we
can demonstrate different types of synchronization compris-
ing identical synchronization with time offset and antisyn-
chronization and generalized synchronization with vanishing
linear correlation.

The experimental setup is sketched in Fig. 1, showing the
two mutually coupled electro-optic nonlinear delay oscilla-
tors, labeled as i=1,2. Following the principle of �17,18�, in
each oscillator a nonlinear transformation is performed by
the two-wave interference modulation transfer function of an
integrated-optics LiNbO3 Mach-Zehnder modulator �MZ1,2�.
Two circulators C1,2 are connected to two fiber channels
joined into the same 2�1 50/50 fiber coupler, the single
output of which is cleaved and metallized to form a mirror.

This configuration combines the two intensity dynamics
from the MZ outputs, and it also performs the so-called
DSFC for both oscillators. The DSFC signals are detected in
both oscillators by broadband photodiodes PD1,2, then ampli-
fied by broadband rf drivers, to finally serve as the modulat-
ing input for MZ1,2, thus closing the oscillator loops. The
linear electronic filtering actually ruling each oscillator dif-
ferential process is mainly limited by the amplified photodi-
ode bandwidth of 30 kHz to 12 GHz. Notice the important
role of the mirror at the single end of the fiber coupler, which
performs a balanced superposition of each oscillator dynam-
ics, the latter superposition being then symmetrically redis-
tributed to both oscillators. Delay is mainly determined by
the fiber lengths connecting the different elements, which
lengths can be chosen identical or asymmetric �e.g., inserting
a fiber spool�, in order to explore different timing of the
mutual DSFC. Fine-tuning of the delays and feedback am-
plitudes are allowed by two variable-delay lines VD1,2 and
two variable attenuators VA1,2. This coupling scheme is re-
lated to a recently proposed all-optical scheme �15�, but it
has been here adapted and generalized using electro-optic
nonlinear delay oscillators. An advantage is that sensitivity
against variation of optical phases can be avoided.

The light of each MZ output is observed via a broadband-
amplified photodiode PD1,2� which is located at the free out-
put of the 2�2 fiber coupler. PD1,2� are of the same model as
PD1,2. The dynamical states of both oscillators are analyzed

FIG. 1. Experimental setup of the electro-optic oscillators with
delayed shared feedback coupling �DSFC�.
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simultaneously by connecting PD1,2� with a 6-GHz real-time
digital scope. Therefore, the measured signals correspond to
the filtered MZ output intensities, according to the combined
filtering of PD1,2� and the scope. Additionally, the free input
of the 2�2 couplers can be used to inject an optical signal
�from laser L1,2� �, acting as an external perturbation.

For complementary insight into the behavior, we perform
numerical modeling based on an integro-differential equation
driven by a nonlinear delayed feedback term �18�. Describ-
ing the actually observed electrical signals x1�t� of PD1�, the
following model can be derived:

�ẋ1�t� + x1�t� +
1

�
�

t0

t

x1�s�ds

= �1 cos2��1x1�t − T1� + �cx2�t − Tc� + �1� , �1�

where � and � denote the characteristic times of the bandpass
filter introduced by the photodiode, with �=1/ �2�fh�
�13 ps and �=1/ �2�f l��5.3 �s corresponding to the high-
and low-frequency cutoff. The delay T1 is defined by the
closed loop path from MZ1, via the circulator C1, the mirror,
back to the circulator, to the photodiode PD1, and the rf
driver with gain G driving MZ1. The delay Tc is the coupling
time between the systems when the signal travels from MZ2
via C2, the mirror, C1, PD1, to the rf driver acting on MZ1.
The gain of the nonlinear transformation �1 is practically
tuned via the laser intensity seeding MZ1. The scaling factors
�1 and �c reflect the actual gain and loss asymmetry between
the self-feedback and the cross coupling. For the presented
results, these parameters have been accurately matched, and
thus �1,2=�c=1. Finally, the phase �1 is controlled by the
bias of MZ1; it determines the local shape of the nonlinear
transformation.

The equation for the other observed signal at MZ2 output
is similar to Eq. �1� �interchanged indices 1 and 2�. Equation
�1� holds for identical photodiodes P1,2 and P1,2� �same � and
��, which is supported in practice by the use of the same
photodiode model. Note that the matched pairs of rf drivers
and MZ have substantially higher bandwidth, so that their
influence on the dynamics can be adiabatically eliminated.

First, we investigate synchronization capabilities for
almost symmetric conditions—i.e., for a shared
feedback-coupling mirror almost in the middle of the
coupling path: the coupling times are matched such that
Tc1,c2=Tc= �T1+T2� /2. Additionally, the oscillator param-
eters are matched within a 2% accuracy, but a small self-
feedback delay asymmetry is deliberately introduced,
T1=108.95 ns and T2=122.65 ns. We adjust the parameters
for broadband chaotic dynamics spanning the full bandwidth.
This is achieved for a gain parameter �1,2=2.4 and matched
bias of both MZ at �1,2=−0.25 rad. For these conditions we
measure the intensity dynamics and calculate the correspond-
ing cross-correlation function C12�	t� from 5-�s-long time
series. It is defined such that maximal correlation Cmax at
	t0
0 implies lagging dynamics of system 2.

The experimentally obtained C12�	t� and the intensity
time series are presented in Figs. 2�a� and 2�b�, respectively.
C12�	t� reveals characteristic peaks which can be assigned to

the delays of the system. First, we identify a remarkably high
Cmax=0.98 at 	t0= �T1−T2� /2=−6.85 ns. In the limit of
matching delays, this offset vanishes leading to zero-lag syn-
chronization. Second, the symmetric functions show recur-
ring �anti�correlations at both feedback delays T1,2 and mul-
tiples thereof, as well as �anti�correlations related to the
difference of T1 and T2. The time series, depicted in Fig.
2�b�, exhibits almost identical dynamics when compensated
by 	t0. This lag defines a condition for an intrinsic common
drive signal, serving as a synchronization-stabilizing mecha-
nism �15�, because both systems are indeed driven by the
same signals coming from the relay element �mirror�, so that
any dynamical output is equally distributed to both systems.
Even for parameter detuning of several percent, the dynam-
ics remains highly correlated with C12�0.90. This indicates
stable identical synchronization. To substantiate this we nu-
merically integrate the model equations using the experimen-
tal parameters T1=108.95 ns, T2=122.65 ns, �1,2=2.4,
�1,2=−0.25 rad, �1,2=13 ps, and �1,2=5.3 �s. Figures 2�c�
and 2�d� show excellent agreement with the experiment. In-
deed, for the matched parameters we obtain indistinguishable
dynamics with Cmax=1.0.

Following the investigation of the almost-symmetric cou-
pling condition, we discuss the influence of two key param-
eters. First, we explore whether stable identical synchroniza-
tion is maintained for substantial delay mismatch, for which
the solitary oscillators would exhibit different dynamics.
Second, we explore how the synchronization properties
change if we detune the nonlinear transformations of one
oscillator with respect to the other. To answer the first
question, we increase the delay for system 2 such that
T2=1102.9 ns exceeds T1=124.1 ns by one order of magni-
tude. Again, we match the remaining parameters, maintain-
ing �1,2=2.4. To see whether the absolute phase of MZ1,2
affects the synchronization quality, we choose a different but
matched phase of MZ1,2 corresponding to �1,2=� /4. For
this condition, we measure the intensity time series and cal-
culate C12�	t�, which is depicted in Fig. 3�a�; the corre-
sponding modeling result is shown in Fig. 3�b�.

Both curves are in good agreement and illustrate highly
correlated dynamics with Cmax=0.94 �a� and 1.0 �b�, despite
the large delay mismatch. In particular, we see that the large
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FIG. 2. �Color online� Cross-correlation functions from experi-
ments �a� and numerics �c� and the corresponding time series in �b�
and �d�, x1�t� �black� and x2�t−	t0� �red�.
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delay mismatch results in a large relative temporal shift 	t0.
A comparison with Fig. 2 shows that the synchronization
quality is not influenced by equally changing �1,2, while the
overall correlation behavior can be affected due to a resulting
change of the dynamics. These findings indicate stable iden-
tical synchronization for systems with strongly differing de-
lays. Such less restrictive conditions might be important for
synchronization in real-world delay systems and attractive
for applications.

To gain insight into the stability properties of the synchro-
nization, we study the system response to an external pertur-
bation. This is realized via optical injection of an arbitrary
bit-pattern signal of 500 Mbit/ s �from L1�� into system 1. We
choose a strong perturbation with an amplitude of 80% of the
chaotic signal. For this condition, we characterize the tem-
porally resolved synchronization quality. Therefore, we cal-
culate the cross-correlation coefficient of 4-ns-long segments
of the 	t0-shifted time series. This is repeated for time steps
of 0.05 ns unveiling the temporal evolution of C12. The result
is presented by the upper �red� curve in Fig. 4 which is
depicted together with the perturbation �lower gray curve�
and the difference signal of the detected dynamics. To facili-
tate comparison, only the difference signal, presented in
black, has been low pass filtered to 1 GHz bandwidth. This
signal resembles the original perturbation signal well. The
cross-correlation values are mostly close to 1 and show low
variance, indicating excellent synchronization. Only during
fast perturbation changes, as occurring at the flanks of the bit
pattern, do short correlation drops arise due to temporarily
degraded synchronization. A statistical analysis of the mean
duration of such degradation, which we define as being sig-
nificant for C12�t�
0.8, yields a resynchronization time of


220 ps. This highlights an extremely fast resynchroniza-
tion process if compared to T1,2. We note that our result for
almost-symmetric delays indicates even higher robustness.

The synchronization robustness can be attributed to the
DSFC scheme, since the mirror acts as a symmetrically re-
distributing element; i.e., the feedback signal for one system
represents the coupling signal for the other system and vice
versa. Therefore, at any time, both oscillators are commonly
driven by the same signals, only with a temporal offset given
by 	t0= �T1−T2� /2. This symmetric redistribution of the sig-
nals acts as a stabilizing �controlling� mechanism so that the
dynamics of both oscillators adapt to the same collective
dynamics, manifesting itself as synchronization. In the same
way, asymmetric perturbations of the dynamics are also
equally redistributed to both oscillators, efficiently reenforc-
ing synchronization. Accordingly, we find robust identical
synchronization. In contrast to this, we observe fundamen-
tally different behavior when we remove the mirror and the
2�1 coupler, directly connecting the systems with a single
fiber. Then, we only find generalized synchronization with
the characteristic leader laggard dynamics, as is typically ob-
served in mutually delay coupled systems �4,6�. For such
coupling, the isochronous identical synchronization solution
is unstable.

For our scheme, we emphasize two points. First, the con-
dition for common drive can be generalized if we allow not
only for dissimilar feedback delays T1�T2, but also for dis-
similar coupling times Tc1�Tc2. Deriving again the condi-
tion for common drive by simple substitution of time refer-
ence �I1�t−T1�+ I2�t−Tc1�= I2�t�−Tc2�+ I1�t�−T2��, one can
show analytically that the necessary condition for identical
synchronization is T1+T2=Tc1+Tc2. The temporal offset is
then given by 	t0,g= ��T1−T2�− �Tc1−Tc2�� /2. We have veri-
fied this by inserting additional optical fiber between MZ1
and C1. Indeed, we obtain identical synchronization with a
time offset given by 	t0,g. Second, note that although this
synchronization condition was derived as necessary, it is not
a sufficient one �19�.

Finally, we discuss the synchronization properties for mis-
matching the nonlinear transformations of the two oscilla-
tors. This is made possible through the independent tuning of
the local shape of the cos2 nonlinearity; the related detuning
parameter is then the relative phase 	�=�1−�2, which in-
fluences the feedback and coupling conditions. The symme-
try and the � periodicity of the nonlinearity suggest charac-
teristic phenomena for 	�= �� /4� and 	�= �� /2�, which we
discuss in the following. As a starting point we choose the
condition for which we find identical synchronization for
	�=0, corresponding to Fig. 2. From this condition, we
decrease �2 until 	�=� /2, for which we obtain good
agreement between the experimental and numerical cross
correlations �Figs. 5�a� and 5�b�, respectively�. Both reveal
anticorrelated dynamics with Cmin=−0.93 �a� and −1.0 �b� at
	t0, the same offset found Cmax for identical synchroniza-
tion. For this antisynchronization state we find similar fast
resynchronization times as for the identical synchronization,
due to the stabilizing common drive. An interesting interme-
diate state can be observed for 	�= ±� /4, for which the
two nonlinear functions are in quadrature. Figures 5�c� and
5�d� present the experimental and numerical cross-
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FIG. 3. Cross-correlation properties for strongly asymmetric de-
lays T1�T2: �a� experiment, �b� modeling.
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FIG. 4. �Color online� Perturbation signal �lower, gray�, syn-
chronization error �x1�t�−x2�t−	T0�� �lower, black�, and time-
resolved cross correlation �upper, red line�, with T1�T2 as in Fig.
3.
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correlation results �	�= +� /4�. This particular detuning
leads to vanishing linear cross correlation at 	t0, but with
remaining correlations related to T1,2. Further insight into
this interesting state can be obtained from the corresponding

synchronization plot depicted as an inset in Fig. 5�d�: the
dynamics reveals a robust circular attractor structure. These
results exclude unsynchronized dynamics which would
manifest itself in filling the complete phase portrait: we con-
clude the presence of stable generalized synchronization.
This particular synchronization state emerges from a
crescent-shaped structure for increasing �1,2, which closes to
a circular one as soon as two maxima of the nonlinear func-
tions are involved in the dynamics. For detuning from 	�
=0 to 	�=� /2, we find gradual transitions between the re-
ported states: the synchronization plot first gives rise to lin-
early correlated dynamics, and then it takes up elliptic shape
which continuously deforms to a circular one.

Altogether, the presented system is attractive, since it al-
lows for complementary experimental and theoretical studies
of the transitions between different synchronization states.
Such fundamental insight is desired for the understanding of
dynamical phenomena in various systems in nature �20�, but
it can also serve functional purposes such as in chaos-based
communication.
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