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Estimation of delay times from a delayed
optical feedback laser experiment
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Abstract. – We estimate delay times from high-dimensional chaotic time series experimentally
obtained from a fast optical time-delayed feedback system. The experiment consists of a semi-
conductor laser, where the instabilities are induced by an external T-shaped cavity introducing
two delay times into the laser. The delay times are determined by a filling factor analysis
and found to give a better estimate than those obtained by autocorrelation functions. Finally,
the possibility of this method for the reconstruction of the system’s differential equations is
discussed.

The characterization of nonlinear dynamical behavior and the identification of the underly-
ing deterministic time-evolution laws from experimental time series has turned out to be one of
the key problems in the study of nonlinear dynamical systems. For dynamical systems with a
low number of degrees of freedom, embedding techniques [1] have been exceptionally successful
for the computation of chaotic indicators (dimensions, Lyapunov exponents, entropies), and
for the modelling of these systems (for an overview see, e.g. [2]). However, severe problems
arise for systems which exhibit a number of dynamical degrees of freedom distinctly larger
than N ∼ 5. A prominent class of dynamical systems that can have a large number of
dynamical degrees of freedom are nonlinear systems with a time-delayed feedback. The study
of such systems with time-delayed feedback were initiated by Ikeda et al. [3]. The Ikeda
scenario turned out to be a paradigm for the dynamical behavior of delayed-feedback systems
under the variation of control parameters. The key features of the Ikeda scenario are the
occurrence of multistability of periodic or chaotic attractors and the onset of high-dimensional
deterministic chaos via attractor merging. Recently, a semiconductor laser system has been
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Fig. 1. – Experimental setup: semiconductor laser coupled to a T-shaped external cavity. The T-
shaped cavity consists of two cavity arms introducing two delay times T1 and T2 with T1 = 2T2.

demonstrated to experimentally show the characteristic phenomena of this scenario. The low-
and intermediate-dimension regime of the time series could be characterized via an improved
correlation dimension calculation method [4]. However, the characterization and modelling
of high-dimensional states (N > 5) with the help of embedding techniques is a fundamental
problem due to the requirements on the amount of data and its precision. Therefore, in the
light of embedding techniques, the high-dimensional dynamics observed in the experimental
laser system could be considered as nondeterministic.

Recently, a novel technique for the identification of time-delay systems has been intro-
duced [5]-[7]. Distinct progress has been achieved along these lines with the help of the
ACE-algorithm, allowing for the first time the identification of multiple delay times [8], as well
as with the help of embedding techniques in order to identify nonscalar time-delay systems
from a scalar measurement only [9]. The technique relies on the basis that an N -dimensional
time-delay system can be identified by analyzing an N -dimensional time series. This identi-
fication can also be accomplished in the case of high-dimensional chaotic as well as transient
motion. The method allows the determination of the delay time and the estimation of the
time-delay differential equation from experimental time series. So far, the method has been
only applied to time series obtained via the numerical integration of a time-delayed differential
equation and to time series taken from an electronic oscillator. In both cases the underlying
time-delayed differential equations were known a priori. In this paper, this method is used for
the first time to estimate delay times from the time-series of an experiment, in particular a
semiconductor laser in an external cavity, where the governing delay rate equations are of a
less simple form.

The setup of the experiment exhibiting the delay-induced, high-dimensional chaotic dynam-
ics is depicted in fig. 1. We have employed a Fabry-Pérot–type, edge-emitting semiconductor
laser based on the GaAs / AlGaAs material system (HLP1400) emitting at λ = 830 nm. The
facet facing the external cavity is antireflection (AR) coated with a residual reflectivity of
Rr ∼ 10−4 in order to get a better coupling of the laser to the cavity and to avoid further
instabilities like the coherence collapse (see, e.g., [10]). The laser has been driven with constant
injection currents below the threshold of the solitary laser diode, but above the threshold of
the laser with external cavity. The cavity consists of the uncoated facet of the laser diode
(LD) and two external high reflecting gold mirrors (R ≈ 98%). A beamsplitter divides the
light intensity equally between the two cavity arms with the external mirrors. The lengths
of the two arms have been chosen as l1 = 3.000(2) m and l2 = 1.500(2) m corresponding to
round trip frequencies of 50.00 MHz and 100.0 MHz, respectively.

The intensity dynamics of the laser has been detected by a fast Si-avalanche photodiode.
Its electrical output signal is amplified and recorded using a fast digital oscilloscope with a
bandwidth of 1 GHz and a sampling rate of 2 GSamples / s. The length of the time-series



m. j. bünner et al.: estimation of delay times from a delayed etc. 355

has been 32 678 data points measured with a 8-bit resolution. This special T-shaped cavity
configuration has been chosen, because it exhibits typical delay-induced instabilities related
to the Ikeda scenario, showing the whole scenario from stable emission up to high-dimensional
chaos [4]. For the analysis, we concentrate on time series from the high-dimensional chaotic
regime for which a correlation dimension analysis fails. They can be found for injection currents
J > 1.5Jth, where Jth is the threshold current. For the analysis six time series are taken,
obtained for three different injection currents, all of them from the high-dimensional regime.

In the following we describe the application of the identification procedure for time-delay
systems [5]-[7] to the experimental time series. In the case of the experimental laser system
as described above a scalar time-series, the intensity I(t) of the laser signal, is available for
the analysis, allowing the identification of a scalar time-delay system. Therefore, the aim is
to detect nonlinear correlations of the variables (İ , I, Iτ0) in the form of a scalar time-delay
differential equation

İ = hr(I, Iτ0), Iτ0 = I(t− τ0), (1)

with a yet unknown function hr and a yet unknown delay time τ0. It has been observed that
a scalar ansatz already yields important information, i.e. the delay time, even if the system
investigated is nonscalar [7]. The same is expected to be valid in the case of delay systems
with multiple delay times as is the case in the present analysis. The ansatz (1) corresponds to
the hypothesis that the dynamics of the investigated system is governed by a one-dimensional
localized nonlinearity [11], [12] together with an infinite-dimensional linear subsystem, where
the linear subsystem only allows for a uniform, dispersionless transport of signals with a single
delay time τ0.

First, one has to estimate the time derivative İ(t) from the time-series. Obviously, the
estimation of time derivatives from experimental time-series is sensitive towards additional
noise and a special care has to be taken for that purpose. With the help of a spectral analysis of
the time-varying intensity we were able to confirm that the signal does not contain a significant
amount of high-frequency noise (f > 1.0 GHz). Therefore, we assume that the time-dependent
intensity measured with a sampling rate 2.0 GSamples/s allows the estimation of the time-
continuous, high-dimensional chaotic signal with the help of adequate interpolating procedures.
Here, we estimate the time-continuous signal with the help of a cubic-spline interpolation. The
interpolated signal has a sampling rate of 10.0 GSamples/s. The time derivative was estimated
from the interpolated signal with the help of a parabolic approximation.

Next, we have to estimate the yet unknown delay time τ0 from the data. To this end, we
perform a filling factor analysis, with the advantages 1) not to rely on any parametrization,
2) not to require a large amount of data, and 3) not to be sensitive towards additional noise [7].
The basic idea is the following: If the variables (İ , I, Iτ0) are correlated via eq. (1), the variables
(İ , I, Iτ0) in a three-dimensional space have to be confined to a two-dimensional surface. This
is detected with the help of the τ -dependent filling factor, which we compute from the variables
(İ , I, Iτ ) by covering the data in a three-dimensional space with a cube, whose axes are oriented
along the (İ , I, Iτ )-axis and whose volume is minimal. Then, each side of the cube is divided
into P equally sized parts and the cube is cut along those lines yielding P 3 cubes of equal size.
Finally, we count the number of cubes, when varying τ , which are visited by the data points
(İ , I, Iτ ) at least one time, relative to the total number P 3 of cubes. For random noise the
filling factor is one, whereas for a value of τ , where the dynamics is enclosed in a surface, we
expect a local minimum to appear in the τ -dependent filling factor indicating the delay time.
In the case of the time-dependent intensity I(t) of the laser experiment the filling factor has
been computed for several values of P , with 3 ≤ P ≤ 12. In fig. 2, we show the τ -dependent
filling factor for 4 different values of P . For a small value of τ the filling factor is small,
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Fig. 2 Fig. 3

Fig. 2. – Filling factor analysis of the time-dependent intensity: the τ -dependence of the filling factor
is shown for several values of P , where P 3 is the number of equally sized cubes, which are used to
cover the trajectory (İ, I, Iτ) in a three-dimensional space. For the analysis we used a time series of
interpolated data (sampling rate of the measurement: 2 GHz; sampling rate of the interpolated data:
10 GHz) with 163 390 data points.

Fig. 3. – (a) Time-averaged correlation function of the time-varying intensity; (b) enlargement of the
correlation function in the vicinity of the delay times τ1 = (10.00±0.01) ns and τ2 = (20.00±0.02) ns.

indicating the local correlations in time. With increasing τ the filling factor also increases
due to the high-dimensional chaotic nature of the dynamics until it reaches a plateau. For
τ ≈ τ1 = 10.0 ns and τ ≈ τ2 = 20.0 ns and its integer multiples the filling factor shows
pronounced local minima indicating the nonlocal correlations in time due to the underlying
time-delay system.

It is well established that the delay times can, in most cases, also be estimated with the
help of autocorrelation functions [13]. But, by definition, the autocorrelation function can
only detect linear correlations of the variables (I, Iτ ), leading to an overestimation of the
delay time due to a finite reaction time of the system [14], or even a failure of the detection.
The correlation function of a measured time series is shown in fig. 3. The delay times τ1 and
τ2 are indicated by the correlation function as local maxima and minima, which alternate in
sign. Note that the correlation function is sensitive to any correlation in the form I ∝ Iτ , not
only to the correlations in the form I ∝ f(Iτ ), where f is a nonlinear function, induced by
a time delay. Therefore, the detection of the delay time is somewhat open to interpretation,
since additional local extrema appear in the correlation function indicating the dominance
of different dynamical frequencies of the external cavity. In table I we now compare the
determined delay time estimated by the filling factor and the autocorrelation function method.
To this end a statistical mean of the estimates taken from six time series has been performed,
allowing us to considerably decrease the errors in the case of the estimation of τ1, while in the
case of τ2, the error could not be decreased by statistical averaging since the estimation of τ2
is subject to larger fluctuations.
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Fig. 4. – Intersections of the 3-D-trajectory (İ, I, Iτ ) with the plane I = 0 for (a) τ = 5.0 ns, and (b)
τ = 10.0 ns.

Table I. – Comparison of the estimation of delay times.

τ1 [ns] τ2 [ns]

Experiment (10.00 ± 0.01) (20.00 ± 0.02)

Autocorrelation (10.4± 0.1) (20.4± 0.5)

Filling factor (10.1± 0.2) (20.3± 0.3)

As expected, the estimates with the help of the autocorrelation function are systematically
too large. We find that the estimates with the help of the filling factor give better results for
the estimation of τ1. The deviations of the value of τ2 might be due to a) the coincidence
of the first-order minimum of τ2 and the second-order minimum of τ1; b) the fact that the
identification is performed in the space (I, Iτ , İ) and not in a higher-dimensional space. In
fig. 4, we visualize the correlations of the variables (İ , Iτ ) for I = 0. For τ = 5.0 ns, the points
appear totally decorrelated. For τ = 10.0 ns, a correlation of the form İ ∝ f(Iτ ), where f is a
noninvertible function, is observed. This is the source of the local minimum in the filling factor
and a characteristic property of nonlinear time-delay systems exhibiting chaotic dynamics.
The correlation of the form İ ∝ f(Iτ ) cannot be detected by the autocorrelation function and
therefore this is the reason for its shortcomings to estimate the delay time. On the other hand,
the filling factor analysis can detect these correlations and for that reason turns out to be a
successful tool to estimate the delay times in the laser experiment.

Finally, we shortly comment on the identification of the scalar time-delay differential equa-
tion according to eq. (1). To this end, we computed a model for the system with the help of a
locally linear fit, which we subsequently used for the forecasting of the dynamics. The iteration
of the model yielded trajectories which were qualitatively different from the measured dynamics
I(t). Therefore, we infer that the dynamics is not governed by a scalar time-delay system with
a single delay time, while the delay times can still be well estimated; this corresponds to a
situation already encountered in the case of a two-dimensional analogue of the Mackey-Glass
equation [7].

Future research concentrates on the measurement of an additional observable from the
experiment, which allows for the identification of a nonscalar time-delay system. A successful
identification of the time-delay–induced dynamics would be useful for the estimation of internal
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parameters of the laser, which are otherwise not accessible in a single experiment under the
nonlinear dynamical conditions.

In conclusion, we have presented the analysis of high-dimensional chaotic time-series, ob-
tained by a semiconductor laser experiment. In the experiment the instability is induced
by an external cavity, which essentially introduces two time delays into the system. The
dimensionality of the data is too large in order to estimate the chaotic indicators (Lyapunov
exponents, attractor dimensions) from the time-series and the data have to be considered as
nonaccessible to the time-series analysis methods of nonlinear dynamics. Here, we choose an
alternative approach: In the spirit of a recently proposed identification method for time-delay
systems we used a filling factor analysis to estimate the delay times from the experimental data.
We find that the filling factor analysis can be a simple and powerful tool for the estimation of
delay times from experimental data.
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